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Abstract—In recent years, (Radio Frequency) RF sensing has
gained increasing popularity due to its pervasiveness, low-cost,
non-intrusiveness, and privacy preservation. However, realizing the
promises of RF sensing is highly non-trivial, given typical chal-
lenges such as multipath and interference. One potential solution
leverages deep learning to build direct mappings from RF domain
to target domains, hence avoiding complex RF physical modeling.
While earlier solutions exploit only simple feature extraction and
classification modules, an emerging trend adds functional layers
on top of elementary modules for more powerful generalizability
and flexible applicability. To better understand this potential, this
paper takes a layered approach to summarize RF sensing enabled
by deep learning. Essentially, we present a four-layer framework:
physical, backbone, generalization, and application. While this
layered framework provides readers a systematic methodology for
designing deep interpreted RF sensing, it also facilitates us to make
improvement proposals and to hint future research opportunities.

Index Terms—RF sensing, deep learning, domain adaptation,
generalization.

I. INTRODUCTION

Radio Frequency (RF) sensing is an emerging technology that
is becoming increasingly active in the past decade. Compared
with traditional device-based sensing, RF sensing has improved
usability due to its contactless nature, along with other benefits
such as pervasiveness, low-cost (in both money and energy),
and privacy preservation. It can be used to estimate presence,
status and activity of various targets, and has thus become the
enabling technology for many high-level applications. Basically,
RF signals (e.g., Wi-Fi, 4G/5G, Bluetooth) are ubiquitous in our
surroundings. Targets such as humans in the transmission paths
will reflect, refract, diffract, and scatter the RF signals following
physical laws. By capturing these signals and processing the
patterns, events in the environment can be sensed.

The goal of RF sensing is to “translate” the captured signal
or its properties into meaningful results. Given certain efforts,
Received Signal Strength Indicator (RSSI), Channel State In-
formation (CSI), Time of Flight (ToF), Angle of Arrival/Angle
of Departure (AoA/AoD), doppler frequency shift and even
the baseband signal itself can be accessed at the physical
layer. Traditional model-based RF sensing methods employ
explicit mathematical models to describe the behavior of the RF
signal propagation. Though widely adopted, these methods are
inadequate in handling incomplete and inaccurate information,
so their robustness is questionable.

One problem of model-based RF sensing is that the math-
ematical models oversimplify the real-life scenarios, and they

tend to fail in complex environments. Factors including mul-
tipath fading and in-band interference can make the models
extremely complicated and hence impractical. Moreover, model-
based RF sensing cannot deal with high-level scene understand-
ing tasks, such as human activity recognition (HAR) and pose
estimation. Fortunately, deep learning offers us an alternative
solution. As a data-driven approach, it enables us to extract
RF features without explicitly modeling the underlying phys-
ical processes, thus removing the need for tuning the models
manually. In addition, RF sensing based on deep learning has
the potential to process high-dimensional data and to solve high-
level problems.

Existing literature studies on the topic of RF sensing are
abundant, but they focus mainly on Wi-Fi CSI (a special case
of RF sensing), and lack an in-depth analysis of deep learning
techniques [1], [2]. In fact, recent developments have witnessed
two major trends. On one hand, RF sensing exploiting signal
sources beyond Wi-Fi has emerged. On the other hand, the
application of deep learning is moving toward “abstraction
level”, instead of performing straightforward predictions in
predefined settings. In particular, novel deep neural architectures
proposed for RF sensing are able to distill cross-domain and
environment-independent knowledge from the training data,
leading to better generalizability. Consequently, these trends call
for a systematic and up-to-date survey on general RF sensing
enabled specifically by deep learning.

To this end, our survey takes a layered approach to capture
the hierarchical designs for deep-learning-enabled RF sensing,
aiming to provide a holistic and explainable framework on how
these designs achieve higher-level generalization. Our frame-
work encompasses four layers: physical, backbone, generaliza-
tion, and application, as shown in Figure 1. We first propose
a unified data model for RF physical layer, bringing connected
research directions into focus and laying the foundation of our
framework. Then we review several major applications of RF
sensing. Based on the physical model and application require-
ments, we survey the design of the deep learning architectures:
i) the backbone layer for feature extraction and inference, and
ii) the generalization layer for adapting to new domains and
datasets. Improvement proposals are made for the backbone
and generalization layers accordingly, along with possible future
directions.

II. PHYSICAL LAYER

The physical layer forms the bedrock of RF sensing, and is
responsible for data collection and processing. In this section,
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Fig. 1: A layered framework for deep RF sensing.

we first introduce three physical schemes adopted by RF sens-
ing, then we propose a model to unify the data delivered by
different schemes.

A. Schemes in the Physical Layer

There exist three mainstream schemes for RF sensing:
• Wi-Fi: Wi-Fi infrastructures can provide information for

RF sensing without additional sensors [3], [4], [5]. The
information extracted from Wi-Fi are Received Signal
Strength Indicator (RSSI) and Channel State Information
(CSI). Whereas RSSI only provides coarse-grained signal
intensity information [3], CSI is a fine-grained characteri-
zation of an Orthogonal Frequency-Division Multiplexing
(OFDM) channel [4], [5], depicting the channel state of
each subcarrier between every transmitter-receiver antenna
pair. CSI can be obtained from Wi-Fi cards with cus-
tomized drivers.

• Frequency-Modulated Continuous Wave: FMCW is a
type of radar dedicated for sensing purpose [6], [7]. It
transmits a chirp signal (a signal whose frequency increases
or decreases linearly in time). Because the frequency
difference between the transmitted and reflected signals is
proportional to the Time of Flight (ToF), the range of a
target can be calculated by measuring this difference. Other
information can be further obtained, for example, speed can
be estimated by the Doppler frequency offset.

• Impulse-Radio Ultra-WideBand: IR-UWB [8] is also a
type of radar dedicated for sensing, but with a different
waveform design. Different from FMCW’s chirp signals,
IR-UWB transmits pulses with a very short duration, thus
occupying a large bandwidth. Consequently, the range of a
target can be directly obtained by measuring the time delay
of the reflected signals, which in turn helps to deduce other
information.

Both Wi-Fi and FMCW employ an antenna array to ex-
ploit multiple-input and multiple-output (MIMO) advantages,
so MIMO is assumed as default setting hereafter. Also, as
millimeter waves (mmWave) are adopted by Wi-Fi (partially
as IEEE 802.11ad) and FMCW radar, it is well covered by our
following discussions.

B. A Unified Data Model of the Physical Layer

In order to aid upper deep learning layers in processing RF
data from heterogeneous schemes, we hereby propose a data
model to unify Wi-Fi, FMCW, and IR-UWB. Essentially, we
represent the RF data by a complex tensor C#× ×! with three
dimensions: fast-time, slow-time, and tx-rx antenna pair (i.e., a
pair of transmitting-receiving antenna elements in the respective
MIMO antenna arrays of sender and receiver), as shown in
Figure 2. The fast-time dimension (length  ) represents the
samples (potentially transformed via FFT) of a Wi-Fi OFDM
symbol, FMCW chirp, or IR-UWB pulse. The slow-time dimen-
sion (length !) describes how the symbol/chirp/pulse repeat and
change in the long run. The tx-rx dimension (length #) describes
the spatial diversity.
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Fig. 2: A unified data model for the physical layer.

Based on the unified model, Fourier transform (or wavelet
transform) can be further performed along the slow-time axis
to obtain Doppler characteristics, which in turn suggests the
velocity of a moving target. Spatial spectrum analysis algorithm
(e.g., Capon, MUSIC, and ESPRIT) can be applied to the tx-rx
dimension to estimate the target direction [2]. This unified RF
data representation founds the basis for further processing by
deep learning layers.

III. APPLICATION LAYER

The development of RF sensing has enabled many interesting
IoT applications. Here we focus only on the most important
applications (listed in Table I), although occupancy sensing,
user identification, material classification also belong to the
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ecosystem of the application layer. We choose to introduce this
layer before the deep learning layers as the neural network
designs are driven by applications.

A. Localization

The growing need for location-based services call for accurate
localization. RF sensing provides a solution of localization in
indoor environments where GPS fails to reach. Furthermore,
data-driven approaches are increasingly employed with RF
sensing for localization purposes [15]. As an example, RF
fingerprinting matches measured features (e.g., distilled from
RSSI and CSI) to predefined ones on an RF map. However,
this method requires lots of fingerprints to cover the space.
Also, the performance is affected by the high variability of RF
signals caused by multipath fading and interference. Therefore,
deep learning comes into play: by fully exploring RF data and
extracting deep features, irrelevant information can be stripped
while useful spatial features retained [3], [9], and localization
accuracy can be potentially improved.

B. Human Activity Recognition (HAR)

RF-based methods rival computer vision in HAR applica-
tions, since they are robust to low-light conditions, work in
the existence of occlusions, and preserve privacy. In addition,
they achieve good recognition accuracy while maintaining low
processing and deployment costs. Deeming reflected RF signals
at any moment as a snapshot of human status, a time series of
such snapshots may indicate certain human activity. Therefore,
an RF-HAR task is equivalent to classifying a time series of
RF snapshots. Deep learning can be employed to extract the
spatial-temporal features from the RF data, then a detected
activity will be chosen from a class of trained human activities.
Recent RF-HAR applications include, among others, motion
recognition [4], gesture recognition [5], [11], [12], [8] and sleep
stage detection [7].

C. Pose Estimation

Pose estimation is the process of locating human joints, limbs,
and torso. More specifically, RF signals reflected off human
body are analyzed, so as to extract the skeletons or the meshes
of human body. However, this is not an easy task, since RF
signals do not carry the coordinates of human body parts. To
make things worse, there are many joints and limbs in the human
body, and different parts are associated with different poses.
As a result, the degree of freedom of pose estimation is much
higher than that of a simple localization or classification task,
rendering traditional model-based methods unable to handle this
ill-posed problem. In this context, deep learning, together with
prior knowledge of the human body [4], [13], has been used to
recover human poses from the incomplete information contained
in RF signals.

D. Other Applications

A few applications beyond the above categories are also worth
mentioning. Imaging employs sensing devices to perceive the

target and create a two-dimensional image at radio wavelengths.
In [6], FMCW radar is used to reconstruct a high-resolution
image of the objects behind dense fog, assisted by deep learning.
Channel estimation is a core challenge in wireless communi-
cations, aiming to counteract the adverse effects of multipath,
shadowing, and mobility. As the non-linearity of deep learning
network makes it suitable for handling non-linear distortion,
interference and frequency selectivity caused by a channel, it is
adopted to predict downlink CSI and to recover the transmitted
signal [14].

IV. BACKBONE NETWORK LAYER

With the RF data provided by the physical layer and the
application-driven goal in mind, we are ready to discuss the
design of deep learning layers. We focus on introducing the
building blocks of a backbone network (illustrated in Figure 1)
in this section. We also propose our idea on how to assemble
the modules together for RF sensing tasks at the end.

A. Data Preprocessing

Before feeding the RF data into neural networks, some pre-
processing is needed. One of them is denoising, which removes
noise and irrelevant information from an environment. Common
approaches for denoising include filtering and Principal Compo-
nent Analysis (PCA) [2], [11]. Filtering means separating signal
and noise by transforming the RF signals into another domain.
PCA, instead, projects signals onto uncorrelated “principal com-
ponents”, so that the components with the largest variances are
kept (as a larger variance indicates more information); others are
deemed noise and discarded. Furthermore, PCA pre-processes
data via dimensionality reduction, which may lead to a more
robust model that tends not to overfit the data.

B. Spatial Feature Extraction

The RF data is ready for spatial feature extraction after
preprocessing. The spatial features are extracted from the 2D
slices consisting of the tx-rx pair and the fast-time dimension,
as mentioned in Section II-B. While different pairs of tx-
rx antennas contain angular information of the targets, the
fast-time dimension contains range information of the targets.
Traditionally, model-based approaches directly compute angular
and range information of a target and exploit them to further
derive spatial features. However, deep learning networks often
skip these intermediate steps and extract spatial features in an
end-to-end fashion.
• Feedforward Neural Network (FNN): As the most rudi-

mentary form of deep learning, FNN is universal in the
sense that is capable of approximating arbitrary functions
and thus extracting arbitrary spatial features. However,
redundant parameters of fully connected FNN makes it
inefficient to train and tend to overfit, therefore only a
limited number of existing proposals [14] use FNN for
feature extraction in localization and HAR.

• Convolutional Neural Network (CNN): To overcome the
drawbacks of FNN, CNN encodes the prior knowledge
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TABLE I: A comparison of recent works on RF sensing with deep learning.

Paper Application Backbone Network Generalization Technique
Belmonte et al. 2019 [3] Localization RNN GAN
Li et al. 2019 [9] Localization CNN GAN
Jiang et al. 2018 [4] HAR CNN Adversarial domain adaptation
Ding et al. 2020 [10] HAR CNN+LSTM Meta learning
Zhao et al. 2017 [7] Sleep monitoring CNN+RNN Adversarial domain adaptation
Zheng et al. 2019 [5] Gesture recognition CNN+RNN HCF
Fhager et al. 2019 [8] Gesture recognition CNN Transfer learning
Tamzeed et al. 2019 [11] Gesture recognition CNN+LSTM Zero-shot learning
Yang et al. 2020 [12] Gesture recognition CNN+LSTM Teacher student network
Wang et al. 2019 [13] Pose estimation U-Net+attention Adversarial domain adaptation
Guan et al. 2020 [6] Imaging CNN GAN
Yang et al. 2019 [14] Channel prediction FNN Transfer learning

of translation invariance into itself. On one hand, the
convolution operation gives a constant activation value
regardless of the feature location; on the other hand, the
pooling layer downsamples the feature map to make it
insensitive to the change of feature location. As such, CNN
takes orders of magnitude less training data than FNN,
therefore it has become the widely adopted spatial feature
extractor [4], [5], [7], [11].

As a side note, the features mentioned in this section are “spa-
tial” in the sense that they capture structural information on the
2D slice of the RF tensor, instead of providing direct information
of the 3D space (e.g., AoA and range). For now, FNN and CNN
as fitting functions cannot provide this information reliably. We
will discuss how to improve this in Section. IV-E in order to
develop deep learning models with better interpretability and
explainability.

C. Temporal Feature Extraction

The spatial features introduced in Section IV-B is enough for
differentiating static objects. However, for tasks like HAR in
which targets do not stand still, temporal contextual information
is needed to capture the target dynamics. The temporal features
can be extracted along the slow-time axis from the RF tensors, as
mentioned in Section II-B. We now introduce several temporal
feature extraction modules.
• Recurrent Neural Network (RNN): The first category of

temporal feature extractor is RNN. It not only takes the
current value as input but also considers past inputs, which
is stored as hidden states of the RNN nodes. The nodes
form a directed graph closely related to the time sequence,
hence displaying temporal behavior. Compared to CNN,
RNN is able to process input series of any length, and the
complexity of the model does not increase with the input
size, therefore RNN is chosen in [3], [7] for extracting
temporal features.

• Long Short-Term Memory Network (LSTM): Another
temporal feature extractor is LSTM. It is similar to RNN
but can maintain information in memory for longer peri-
ods. LSTM solves the vanishing and exploding gradient
problem of long RNN by introducing forget gate, input
gate, and output gate into the network. The gates work
together to decide how much information will be thrown
away, kept in the node, taken as input and used as output.

By controlling the flow of information, LSTM outperforms
RNN when dealing with long dependencies, as demon-
strated in [4], [11], [12].

D. Attention Mechanism

Attention mechanism is a weighted aggregation method for
optimizing deep learning models. It can be understood as
“focusing” on more important segments of the RF tensor, i.e.,
important parts are assigned with larger weights and therefore
having greater influence on the result. The attention module
works as a trainable add-on of the feature extractor [13]. For
spatial RF features, the attention mechanism together with
CNN allows prioritizing areas where the target is located. For
temporal features, the attention mechanism can be used with
RNN/LSTM to focus on the segments where important events
occur. It is shown that the attention mechanism improves the
exploration of the relationship between the input RF data and
the inference result, hence enhancing the performance of the
deep learning model for RF sensing [13].

E. Summary and Potential Improvements

Equipped with all the building blocks, we propose the fol-
lowing pipeline to summarize the backbone network layer for
feature extraction and inference. First, RF tensors (as mentioned
in Section II-B) are pre-processed to achieve dimensionality
reduction. Second, the data are fed to both spatial and temporal
feature extractors, with the latter focusing on sequence learning.
Both feature extractors are assisted by an attention module for
better focusing on useful data. At last, the output features are
used for pattern recognition or classification. In fact, several
backbone networks can be juxtaposed to process multiple input
streams (including the original RF tensor and transformed tensor
in other domains), for fully exploiting the high-dimensional
data. Whereas such a pipeline seems to have become a de facto
standard, there are still research opportunities within this layer:
• Complex-valued neural network is a potential improvement

of the backbone layer. As mentioned in Section II-B, ele-
ments of the input tensor are complex numbers, therefore
an accommodating complex-valued network with a richer
representational capacity may be desirable.

• CNN has shown to be too popularly employed in Sec-
tion IV-B, but it is computationally expensive, and does
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not encode orientation and relative position information.
Nonetheless, AoA and range estimation are essentials for
MIMO array processing. Therefore, we suggest to explore
other possibilities (e.g. the capsule network) for construct-
ing the backbone network layer.

• Existing backbones are mostly designed for classification.
However, other applications may adopt different designs;
these include: R-CNN for object detection, U-Net for
semantic segmentation, and CNN+RNN+attention for RF
question answering. Essentially, the vast body of literature
and experience from both computer vision and natural
language processing need to be explored to innovate the
design of the backbone layer.

V. GENERALIZATION LAYER

Traditionally, a single backbone network in Section IV is
enough for deep learning tasks. However, this architecture faces
two challenges: domain shift and data scarcity. Domain shift
indicates that the performance drops when domain (environ-
ment, user, or device) changes; data scarcity means that not
enough training data is collected. Meanwhile, the two are closely
related: domain shift entails a laborious process of collecting and
on-line labeling new data. Previously, researchers in [5] try to
solve the challenges by handcrafting domain-independent fea-
tures (HCF). However, HCFs depend on prior information such
as position and orientation, hence incurring another laborious
process in obtaining this information and making the efforts
futile.

As a solution, we propose a generalization layer on top
of the backbone network, as shown in Figure 1. It extends
the capability of the backbone which is only trained for a
single domain. Figure 3 illustrates the functionality of the
generalization layer with different techniques: by employing
corresponding generalization logic (e.g. knowledge transfer and
data generation), this layer generalizes the backbone model
from the training domain to the “unseen” target domains. As
a result, deep learning models for RF sensing system can be
trained once, but adaptive to other places, people, or devices,
hence providing more extensible services. Next, we summarize
previous generalization techniques, and also put forward our
proposal.

A. Generative Adversarial Network

Generative Adversarial Network (GAN) in Figure 3(a) helps
generalize from small training datasets to larger, more universal
datasets. GAN is a two-player game, in which the generative
network (G) and the discriminative network (D) are pitted
against each other. During training, G generates fake data
conforming to the distribution of a given dataset, trying to
confuse D; while D the classifier, tries to discriminate fake
data generated by G and true training data. After a few rounds,
the data generated by G is so good so as to fool D, which
then can be used to extend the dataset. In [9], Li et al. use G to
generate Wi-Fi fingerprints for indoor localization. By extending
the dataset, the RF sensing system achieves a faster convergence
time and requires less human effort. Belmonte et al. [3] employ

GAN to recover lost fingerprints for continuous localization and
tracking.

B. Adversarial Domain Adaptation

Adversarial domain adaptation in Figure 3(a) is an approach
to generalize from one domain to other domains. It aims to learn
models that transform different domains into a common feature
space. It is closely related to GAN mentioned in Section.V-A,
where there is a competition between G and D. The difference
is that in GAN, the output of G is of interest, whereas in
adversarial domain adaptation, we are interested in learning
features that are invariant across domains by playing the min-
max game. In [4], adversarial domain adaptation is used to
achieve environment-independent HAR. Wang et al. [13] em-
ploy this method to transform and adapt the RF data tensor to
new environments for pose estimation. Zhao et al. [7] applies
it to make learning human sleeping stages independent from
individuals and measurement conditions.

C. Teacher Student Network

Teacher student network in Figure 3(b) is another candidate
for generalization layer. The network is traditionally used for
knowledge distillation: a larger teacher network T with many
parameters “teaches” a much smaller student network S how
to perform tasks. S is trained by copying the exact behavior of
T . Since T is wider and deeper, it tends to have better gen-
eralizability. By letting T guiding S, a similar generalizability
can be achieved by S. The teacher-student structure is mainly
used when the application imposes limitations on a solution
(e.g., insufficient training data and limited computation power),
therefore it must resort to a larger network for more powerful
generalization. In MobileDA [12], the S network is deployed
on edge device, therefore its training is supervised by the T
network on the server for more generalized knowledge.

D. Transfer Learning

Transfer learning in Figure 3(c) works by fine-tuning pre-
trained model to handle similar tasks, since these tasks often
share common knowledge. For example, the trained weights
of the first several layers of neural networks can be reused
across different tasks, since the layers capture input features
independent of specific tasks. We can transfer this knowledge
and fine-tune the rest of the model, therefore adapt the model
to new task with few samples and low cross-domain training
cost. In our generalization layer, the idea is used to trans-
fer knowledge from the source domain to the target domain
(e.g., RF environments, datasets, devices, and human subjects).
Fhager et al. [8] employs transfer learning to achieve accurate
cross-domain gesture classification. Yang et al. [14] leverage the
generalizability of transfer learning to predict the CSI of FDD
MIMO downlink in previously unseen environments.

E. Zero-Shot Learning

Zero-shot learning in Figure 3(d) intends to recognize classes
whose instances are unseen during training. Instead of relying on
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Fig. 3: Different techniques used in the generalization layer.

lots of training data, it recognizes new classes by descriptions.
More precisely, zero-shot learning exploits knowledge from
semantic space, and then relate it to known classes, hence
generalizing to more classes. For example, in HAR, in order
to teach the concept of a run to the model that has already
learned walk, instead of training the networks with many RF
data of people running, zero-shot learning enables the network
to recognize run by incorporating the relationship between run
and walk (learned from the semantic space) into its previous
knowledge of walk. In Wi-Fringe [11], researchers transfer the
knowledge from attribute embeddings of English words to RF
sensing systems for recognizing unseen human activities.

F. Optimization-Based Meta Learning

Meta learning, which literally means “learning to learn”, is
the state-of-the-art technique to improve the generalizability
of deep neural networks. Optimization-based meta learning in
Figure 3(e), which is a type of meta learning, achieves fast
domain adaptation by tweaking the gradient descent algorithm.
Model-Agnostic Meta Learning (MAML) is an implementation
of optimization-based meta learning. It initializes the model with
parameters that can be adapted to any new task using a few
gradient descents. MAML has been proven to be applicable to
a variety of different tasks, including classification, regression,
and reinforcement learning. This generalization technique has
not been applied to RF sensing yet, possibly due to its high
complexity that confines the depth of backbone networks.

G. Our Proposal

The generalization layer is still open for researchers to investi-
gate new strategies. As optimization-based meta learning is slow
in training, adds system complexity, and fails to handle large
backbone networks and unbalanced classes, we hereby propose
metric-based meta learning [10] as an alternative. As shown in
Figure 3(f), metric-based meta learning is simple, yet flexible
and powerful. Instead of learning a classifier, this method tries
to learn a good embedding function, which encodes RF data
to a feature vector. By measuring the similarity (via Euclidean
norm, cosine distance, or a learned metric) among feature
vectors, RF tensors can be classified to its nearest neighbor

(NN). The embedding function can be quickly re-trained in
new domains, hence expediting new learning tasks. Preliminary
HAR experiment results involving Wi-Fi, FMCW, and IR-
UWB are used to demonstrate the effectiveness of our method.
The center frequencies of these three devices are 5.8, 77, and
7.29GHz, respectively; and their respective bandwidths are 0.04,
4, and 1.4 GHz. They are tested in 100 new domains, i.e., 10
rooms, each with 10 distinct layouts and placements of objects.
Figure 4a shows the recognition accuracies of 10 human subjects
performing 6 activities for different generalization techniques.
Under only one, two, and three labeled training samples for
each class (namely “1-shot", “2-shot", and “3-shot") in a new
domain, our proposed model exhibits a superiority over other
methods. Similarly, our method consistently outperforms others
for all physical-layer schemes in Figure 4b.
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Fig. 4: Performance of four typical generalization techniques
under different experiment conditions.

In addition to this brief proposal, we further highlight a few
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potential research directions:
• Self-supervised learning utilizes the intrinsic relation of

unlabeled data for supervision. It can teach the neural
network some “common sense” in the RF data, which is
useful for generalizing to target domain where high-quality
labels are hardly available.

• Network architecture search (NAS) is a technique for
automating the backbone network design, aiming to select
the best-performing architecture after traversing various
choices. One may design end-to-end learning pipelines
with better generalizability by employing NAS.

• Incorporating prior knowledge of the underlying physical
process may also help. Instead of developing pure model-
based techniques, priors derived from the (physical) do-
main shift process can potentially bring both new insights
and better explainability.

VI. CONCLUSION

In this article, we take a layered approach to summarize deep-
learning based RF sensing. The layered framework includes four
layers, namely, physical, backbone, generalization, and applica-
tion. In the physical layer, a novel RF data model provides a
standard data interface for upper layers. Based on the unified
physical layer representation and driven by various applications,
we discuss the design methodologies of the backbone network
layer that converts complicated RF sensing modeling to end-to-
end deep learning tasks. We also add a generalization layer on
top for more powerful generalizability and flexible applicability.
This article provides a comprehensive summary of this emerging
field, presents a proper theoretical framework and thus motivates
researchers to design new deep-learning enabled RF sensing
systems.
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